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Statistical and logical reasoning
in disambiguation

By Stephen G. P ulman

University of Cambridge Computer Laboratory, New Museums Site,
Cambridge CB2 3QG, UK and

SRI International Cambridge Computer Science Research Centre,
Suite 23, Millers Yard, Mill Lane, Cambridge CB2 1RQ, UK

While recent statistical methods for disambiguation in natural language processing
have been very successful, earlier arguments still hold for the position that fully
successful disambiguation requires reasoning to new conclusions from old facts. We
explore ways of complementing statistical approaches with the use of `domain theo-
ries’: collections of facts and axioms that characterize the typical structure of some
task domain. In particular, we hypothesize that disambiguation decisions can supply
tacit information about such theories, and that the theories can, in part, be auto-
matically induced from such data. We describe a pilot experiment in which a partial
domain theory for the domain of air-travel information was induced from a corpus of
disambiguated example sentences, the resulting theory then being used successfully
in disambiguating other sentences from the same domain.

Keywords: natural language semantics; ambiguity;
domain theories; inductive logic programming

1. Introduction

Ambiguity has played an important role in linguistics. The existence of some types
of ambiguity is in fact the clearest evidence that sentences have abstract structure
over and above a linear sequence of words:

1 a Flying planes can be dangerous
b He saw the man with the telescope

However, the process of disambiguation itself has received relatively little attention
within linguistics, probably because of in®uential early work in linguistic semantics
that stressed the variety of non-linguistic knowledge needed for disambiguation, and,
by implication, the di¯ culty of eliciting and encoding such knowledge so as to be
able to use it for this purpose:

For practically any item of information about the world, the reader will
­ nd it a relatively easy matter to construct an ambiguous sentence whose
resolution requires the representation of that item (Katz & Fodor 1964,
p. 489).
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1268 S. G. Pulman

In fact, it is not just having the relevant information available that is needed:
a wealth of examples seems to indicate that we have to go on to draw arbitrarily
complex inferences from that information to make disambiguation decisions.

2 Little John was looking for his toy box.
The box was in the pen.

Bar-Hillel’s famous example (Bar-Hillel 1960) demonstrates that in order to select
the more plausible interpretation of `pen’ as `play pen’ rather than `fountain pen’
we have to draw inferences about the context of the sentence itself. This reasoning
presumably proceeds along roughly the following lines. We locate the referent for
`the box’ as `the toy box’, and we ­ nd (let us assume) just the two candidate mean-
ings for `pen’. We know something about the relative sizes of these objects and ­ nd
that we can construct a picture consistent with these relative sizes for the interpre-
tation `box in play pen’ but not for `box in fountain pen’, and hence we choose the
former.

Other examples that have become equally well known suggest that the reasoning
involved can draw on facts that require a subtle understanding of social or political
structures, rather than facts about the physical world.

3 The police refused the students permission to demonstrate
because they advocated/feared violence.

The decision as to whether `they’ refers to `the police’ or to `the students’ with
one or another of the alternative verbs, seems to be given by our assessment of
the relative plausibilities of the propositions `police/students advocate violence’ and
`police/students fear violence’, and the likelihood that each of these propositions
could form a reason for the police withholding permission. However, both here and
in the earlier example, the decision involves judging the plausibility of a proposition
inferred from things already known, but which is itself novel: it is very unlikely that
a hearer has consciously or unconsciously worried on any previous occasion about
whether toy boxes can ­ t into fountain pens, or whether police fear violence more
than students do.

Observations like these have led to a widespread perception within the linguistics
community, and to some extent within the computational linguistics community,
that successful disambiguation in automatic natural language processing systems
is something that awaits the completion of the programme of traditional arti­ cial
intelligence: the ability to represent and reason with the knowledge of the world
available to the average native speaker of a language. This is not a programme that
is currently regarded as feasible.

More recently, people have turned to statistical methods for resolving some types
of ambiguity; methods that appear to be relatively successful without involving the
kind of complex knowledge representation and reasoning schemes implied by Katz &
Fodor’s (1964) claim. Some of these methods (e.g. focus-based schemes for pronoun
resolution) rely on the frequency of particular con­ gurations of structural properties,
and, thus, do not even attempt to use anything like a domain theory in the sense
that we are using it. Others, however, try to include some notion of content via
the inclusion of particular words or word-senses; for example, the `preference-based’
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disambiguation schemes in the Core Language Engine (Alshawi & Carter 1994), or
the lexical head and dependency based schemes of Collins (1998).

Some of this latter family of statistical techniques can be seen as ways of trying
to build a domain theory. The result of statistical training is a crude kind of theory
of the structure of the domain that allows us to make assessments of the relative
probabilities of competing propositions. For example, if we were able to train on a
large relevant corpus of English, annotated in the appropriate way, we might hope
that our preference measures would tell us that given sentences like

4 a I blew up the safe with the dynamite
b I saw the man with the bicycle

the verb phrase attachment is preferred for (a) on the grounds that the simple propo-
sition `blow up with dynamite’ is more likely than `safe with dynamite’, whereas the
noun phrase attachment is preferred for (b), because `man with bicycle’ is more likely
than `see with bicycle’.

The problem with such schemes is that they are very dependent on the testing data
being su¯ ciently like the training data in all the ways relevant for the disambiguation
decision. A scheme for lexical disambiguation trained on a large corpus of sentences
of English, for example, would be very unlikely to make the right decision for Bar-
Hillel’s (1960) example, or for the demonstrators example, because the information
needed to trigger the decision is simply not present in the form of the sentence; that
was Bar-Hillel’s (1960) point. It might be argued that this problem could be solved
by including more conditioning factors in the statistical model; for example, taking
into account some of the properties of surrounding sentences, which act as a context.
The problem with this suggestion is that the corpus used for training now has to be
very much larger than before if a su¯ cient number of relevant observations are to be
found in it. It might also be argued that examples like Bar-Hillel’s (1960) are rare
enough that for practical purposes failure to resolve them does not matter; this is a
defensible engineering principle, but it still leaves us without a scienti­ c account of
what this kind of disambiguation involves.

What is really needed is to ­ nd some way of combining some properties of statis-
tical approaches with theories that have su¯ cient deductive structure to allow them
to be used in reasoning to the appropriate conclusions, even when these conclusions
are not directly re®ected in any of the previously observed data. Some kinds of auto-
matic clustering and back-o¬ schemes can be seen as a way of trying to add some of
this deductive structure to n-gram or other methods. But the types of inferences that
these extra mechanisms sanction are typically rather simple: essentially `isa’ hierar-
chies and other types of taxonomic reasoning. It is not likely that they will extend
to, say, reasoning involving logical connectives, complex predicates, or quanti­ ers.

2. Building domain theories

The early pessimism about the possibility of building large-scale monolithic theories
by hand is surely justi­ ed, although there have been some heroic (and expensive)
attempts. Moreover, it is not clear that a single `theory of the world’ is what is wanted:
experience in using general linguistic classi­ cation schemes, such as WordNet (Fell-
baum 1998) suggests that, in particular domains, word usage and relationships can
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be rather di¬erent from `general usage’, which is presumably based on an abstrac-
tion from many such domains, not necessarily chosen systematically. Domain-speci­ c
hand-crafted theories have been developed from time to time: the earliest was perhaps
embodied in the `preference semantics’ of Wilks (1975), and more recent attempts
have been described by Hobbs et al . (1993). However, even constructing such smaller
theories is still an extremely labour-intensive business.

What we need is some way of automatically, or semi-automatically, inducing
domain theories from data of some kind. But from what kind of data? Here, we can
perhaps go back to the original observation that in order to make a disambiguation
decision we need a great deal of knowledge about the world. However, the observation
that disambiguation decisions depend on knowledge of the world can be made to cut
both ways: just as we need a lot of knowledge of the world to make disambiguation
decisions, so a given disambiguation decision can be interpreted as telling us a lot
about the way we view the structure of the world. Since in the general case it is a
much easier job to disambiguate sentences than to directly encode the theory that
we are drawing on in so doing, a better strategy for trying to build a domain theory
would be to try to capitalize on the information that is tacitly contained in those
disambiguation decisions.

In order to test this hypothesis and develop a method for learning such domain
theories, a small pilot experiment was carried out aimed at constructing a logically
structured domain theory automatically from a disambiguated corpus. In overview,
the method was to use the disambiguated corpus to produce a set of logical expres-
sions representing linguistically possible interpretations of the sentences. These inter-
pretations can be assumed to describe both what is and is not possible in the
domain. Roughly speaking, the logical form representing the correct reading of a
sentence can be assumed to describe something possible in the domain (`positive
data’), whereas logical forms corresponding to impossible readings describe some-
thing that cannot happen in the domain (`negative data’). This is an oversimpli-
­ cation in several ways, of course. Firstly, the correct and incorrect logical forms
overlap in some of their components, and so the overlap must be factored out of
the negative data. Secondly, it may not be the case that the incorrect reading is
actually impossible rather than just unlikely in the context. The ­ rst simpli­ ca-
tion must be remedied, but we will have to ignore the second, at least for the time
being.

Having got the negative and positive data, we can then apply a machine learning
method to induce a theory that adequately predicts the positive and negative data,
ideally from a small and compact set of axioms. The method used was the `induc-
tive logic programming’ (ILP) paradigm (Muggleton & De Raedt 1994; Muggleton
1995a). Given a background theory B, and some evidence E, the task of ILP is to
­ nd a hypothesis H such that B & H j= E. This latter expression can be rearranged
as B & E j= H . For certain types of ­ rst-order theory there will be some set of ground
literals ? true in every model of B & E. Since H must also be true in every such
model, it follows that B & E j= ? j= H. Then, for any such H, it must be the case
that H j= ?. The set of candidates for H can be enumerated by searching through
the lattice of clauses that subsume ?, or variants of ?. The CProgol system (Mug-
gleton 1995a) searches this lattice to produce the candidate for H which explains E
in the most economical way, that is, resulting in the smallest number of clauses in
the ­ nal theory.
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The ILP paradigm was chosen for several reasons. Firstly, it is known to scale-
up e¬ectively to realistically sized problems. Secondly, the particular ILP algorithm
used is tolerant to noise or inconsistency in the data. Thirdly, the framework o¬ers
the promise of being able to integrate logical theories with statistical modelling by
learning rules with probabilities associated with them (Muggleton 1995b).

In our case, the resulting set of clauses constitute the domain theory we are looking
for, and can be used, in principle, to carry out the kind of disambiguation task we
are concerned with. Disambiguation itself can be carried out in several ways: the
most straightforward, but least e¯ cient, is simply to ­ nd each interpretation in
turn and discard those that are inconsistent with the axioms of the domain theory.
The remaining interpretations are guaranteed to be possible ones, but some further
reasoning may still be required to select the preferred one (e.g. interpretations that
add no new information will be consistent but uninformative).

Step 1: data collection

To begin with, a set of 500 sentences from the Air Travel Information Service
(ATIS) corpus were collected by searching for those containing the words `®ight’,
`fare’ and `meal/dinner/breakfast’. The ATIS corpus was chosen because although
it is real data, the domain is very simple and constrained, and constrained even
further here by limiting ourselves to just a few types of sentence. However, it is
worth pointing out that even though the domain is simple, it is representative of
many types of task domain that are suitable for practical commercial applications.

A simple uni­ cation grammar and parser using a formalism described in Pul-
man (1996, 2000) was used to parse the sentences into a kind of `quasi-logical form’
(QLF). After adding the 30 or 40 most-frequent missing vocabulary items to the
system, and, in some cases, simplifying the sentences in ways that were irrelevant to
the experiment (e.g. normalizing airline and city names, dates, times, etc.), about
200 sentences were obtained that parsed fully. One hundred and twenty of the sen-
tences were unambiguous, and although such sentences contain useful information,
they were ignored for the experiment. The remaining 80 sentences were then partly
disambiguated by adding brackets to the sentence:

[i,would,like,[the,cheapest,flight,from,washington,to,atlanta]]
[can,i,[have,a,steak_dinner],on,the,flight]
[do,they,[serve,a,meal],on,[the,flight,from,san_francisco,to,atlanta]]
[i,would,like,[a,flight,from,boston,to,san_francisco,

[that,leaves,before,’8:00’]]]

Step 2: creating a Q̀LF bank’

The unbracketed sentences were parsed and the bracketing used to divide the
resulting QLFs automatically into good and bad. A good QLF is one deriving from
a parse that is consistent with the constituent structure indicated by the bracketing.
An example of a good QLF for the ­ rst sentence above, simpli­ ed to abstract away
from the particular notation used, is

5 A.would(like(A,i,the( B.®ight(B) & from(B,washington)
& to(B,atlanta) & cheapest(B))))
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An example of a bad QLF is

6 A.would(like(A,i,the( B.®ight(B) & from(B,washington)
& cheapest(B)) & to(A,atlanta)))

(Note that QLFs are treated as predicates of events and will be subject to the relevant
contextual resolutions.) In the ­ rst QLF, it is the ®ight, B, that is to Atlanta, cor-
rectly corresponding to the reading on which the prepositional phrases are attached
to the object noun phrase. In the bad QLF, it is the event argument of the verb, A,
that is to Atlanta, corresponding to the verb phrase attachment of that prepositional
phrase. Other QLFs for this sentence are essentially permutations of these solutions.

Many sentences have more than one QLF that is consistent with the bracketing
assigned, and, thus, get multiple QLFs characterized as good. This sentence, for
example, when the prepositional phrases modify the noun phrase only, has the parse
given where `cheapest’ scopes over the nominal phrase `®ight’ and its modi­ ers `®ight
from: : : ’, and also one where `cheapest ®ight’ is the nominal modi­ ed. Given the
oversimpli­ ed semantics we have assigned to `cheapest’, the result is to get logically
equivalent interpretations di¬ering only in the orderings of the conjuncts inside the
meaning of the de­ nite noun phrase.

Step 3: turning to normal form

The ILP system used, CProgol (Muggleton 1995a), requires the evidence to be in
the form of ­ rst-order clauses. Since the QLFs produced by the parser are intrinsically
higher-order logical expressions, they have to be transformed into ­ rst-order near-
equivalents. This is achieved in the following way. Firstly, the QLFs are resolved, in
a null context, using the system described in Pulman (2000). Resolution consists of
locating the interpretation of pronouns and de­ nites, ­ lling in any ellipses, and so on.
In the ATIS corpus there are actually very few contextually dependent constructs
like this, since the corpus consists of single sentences rather than dialogues, and
so resolution for our sentences is fairly simple. In our case it essentially amounts
to predicating the event predicate of a new event discourse referent, translating
determiners to quanti­ ers with as near as possible to their surface scope ordering,
and resolving all de­ nites as existentials. We then transform these to approximately
equivalent ­ rst-order expressions by translating generalized quanti­ ers to ­ rst-order
versions, where possible, and stripping out any higher-order operators (like `would’)
that correspond to tense and aspect information:

7 9A.®ight(A) & from(A,washington) & to(A,atlanta)
& cheapest(A) & like(e73,i,A)

8 9A.®ight(A) & from(A,washington) & cheapest(A)
& like(e75,i,A) & to(e75,atlanta)

Next we need to transform these ­ rst-order expressions into the clausal forms
required by CProgol. This can be done by the usual procedures of skolemization and
normalizing to conjunctive normal form. Each of the resulting sets of disjunctions of
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literals represents a clause. We also ®atten the clauses by translating any functions
into extra predicates in a way illustrated by an arti­ cial example:

a(b(c); d(e)) ) a(1; 2) & b0(1; c) & d0(2; e):

In clausal form, our good and bad QLFs look like:

9 [[®ight(sk80)],[from(sk80,washington)],[to(sk80,atlanta)],
[cheapest(sk80)],[like(e73,i,sk80)]]

10 [[®ight(sk82)],[from(sk82,washington)],[cheapest(sk82)],
[like(e75,i,sk82)],[to(e75,atlanta)]]

Step 4: separating negative and positive evidence

We now have to factor out the good and bad components of a bad QLF. As can
be seen from the previous example, the good and bad QLFs agree in some of their
components, re®ecting the shared elements of the analyses of the original sentence,
but di¬er in the component that corresponds to the di¬ering prepositional phrase
attachment. However, in going to a normal form, the process of skolemization has
made it a non-trivial exercise to automatically detect this overlap. In other cases, the
normal-form process will produce still more radical di¬erences between similar QLFs:
for example, some di¬erent prepositional phrase attachments will produce di¬erent
scoping behaviour, leading to one literal being positive in one QLF but negative in
another. In fact, in going to CProgol form we ignore negations, whether they arise
from the original sentence or from the normal-form process. This makes the next
step easier, but also has an intuitive motivation: a negative literal is denying that
some proposition is true in the domain. Under normal circumstances, this will be
a proposition that nevertheless makes sense in the domain in question. There are
some circumstances in which negatives are about the structure of the domain|for
example, `My shoes don’t sing’|but more usually they are saying that something
that is possible happens not to be the case: `My shoes aren’t black’. Hence, ignoring
the negation sign, although producing a clause that does not mean the same as the
original, is still producing valid data as input to the process of theory induction.

To ­ nd the overlap we search for a set of substitutions of arguments of the predi-
cates in the two clause sets which

(a) preserves sort information as far as possible (i.e. events map to events, ®ights
to ®ights);

(b) preserves the connections between di¬erent clauses (i.e. literals with the same
arguments in one clause set map to literals with the same arguments in the
other clause set); and

(c) minimizes the di¬erence between the two clause sets.

When we have the best such set of substitutions, which will be a set of pairs of
arguments from the two clause sets, any individual pairs in the set violating one or
more of these conditions ®ag non-overlapping components.
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In the current example, the di¬erence is located in the two literals `to(sk80,atlanta)’
and `to(e75,atlanta)’. We can now apply the structure-preserving components of the
substitution to make the two clause sets explicitly overlap, and represent the good
QLF as positive data and the non-overlapping component of the bad QLF as negative
data. The data input to CProgol is

% positive:
cheapest(sk80). flight(sk80).
from(sk80,washington). to(sk80,atlanta).
like(e73,i,sk80). event(e73).

% negative:
not(to(e73,atlanta)).

Notice that we add an explicit assertion that e73 is an event, since this necessary
type information is not otherwise explicitly represented.

The ­ nal dataset derived from our 80-sentence disambiguated corpus contains
about 700 such clauses once duplicates are eliminated.

Step 5: inducing a domain theory

To use the ILP system CProgol to induce a relevant theory, we need to supply
some background information. In our case this consists of type information about
the various constants to be found in our evidence:

city(atlanta). airline(united).
date(’16/8’). day(tuesday).
time(’8:00’). breakfast(X) --> meal(X).
etc.

We also need to provide some information about what predicates we are trying to
learn the theory of. In this simple experiment, we try to learn the theory describing
the possible uses of the four most-frequently occurring prepositions in the training
corpus, since prepositional phrase attachment ambiguities are our focus:

:- modeh(1,on(+any,+any))? :- modeh(1,from(+any,+any))?
:- modeh(1,to(+any,+any))? :- modeh(1,at(+any,+any))?

These declarations say that predicates corresponding to the prepositions can occur
as the head of a clause that can succeed once, and that there is no restriction on the
types of the arguments to the predicates, although in other richer domains we might
well want to supply such information to narrow down the search.

We also need to supply analogous information about the predicates that can be
included in the body of a clause. In our case we let that be the remainder of the
logical-form constants representing content word senses in the vocabulary of the
system, since we do not want to impose any a priori guesses about the theories to
be learned. Again, in a richer domain it might be sensible to incorporate some more
structure to restrict the hypothesis search space. In our domain the most important
predicates that actually ­ gure in the theories learned are

:- modeb(1,city(+city))? :- modeb(1,flight(+flight))?
:- modeb(1,airline(+airline))? :- modeb(1,time(+time))?
:- modeb(1,day(+day))? :- modeb(1,meal(+meal))?
:- modeb(1,fare(+fare))? :- modeb(1,event(+event))?
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3. Positive and negative theories

Having read all this information into the CProgol system, we then ask it to `gener-
alize’ the various predicates that we have speci­ ed: namely, on/2, from/2, to/2,
and at/2. The resulting ­ nal theory for `on’ is

on(e45,sk48). % I’d like a meal on flight...
on(e56,sk66). % I’ll have breakfast on flight...
on(e58,sk70). % ditto
on(v72,sk71). % what meal is on the flight?
on(sk295,sk296). % I want information on flight...
fare(A) --> on(A,B)
flight(A) & day(B) --> on(A,B)
flight(A) & airline(B) --> on(A,B)

These eight clauses completely predict all of the relevant positive evidence and
none of the negative evidence. However, we note that the ­ rst ­ ve clauses are from
the original evidence, suggesting that the algorithm was unable to ­ nd a clause that
generalized from them su¯ ciently. Inspection of the hypotheses considered showed
that candidates for speci­ c clauses generated from the evidence included

event(A) & flight(B) --> on(A,B)

which characterizes the ­ rst three clauses adequately but also characterizes a lot of
the negative data. The fourth piece of evidence gave rise to the speci­ c clause

meal(A) & flight(B) --> on(A,B)

which su¬ers from the same problem, and, thus, is not considered further.
Something analogous happens with `at’, where the ­ nal theory is

at(sk102,’14:00’). at(sk120,’15:24’).
at(sk143,’18:00’). at(sk147,’9:00’).
at(sk273,’17:00’).
fare(A) --> at(A,B)

and where the rule covering the ­ rst ­ ve cases is considered, but does not achieve
su¯ cient compression of the data:

flight(A) & time(B) --> at(A,B)

The remaining two theories are all but identical:

flight(A) --> from(A,B) fare(A) --> from(A,B)
flight(A) --> to(A,B) fare(A) --> to(A,B)

Together, these clauses seem like a reasonable characterization of the kinds of
things that are in the on/2, at/2, to/2 and from/2 relations in the simple domain
represented by the corpus. Of course, the ground unit clauses are not going to apply to
any new sentences, so we must ignore them. Unfortunately, we are unable to proceed
to use some of the remaining axioms directly to rule out impossible interpretations
of other sentences in the way we had envisaged. The original plan was to use a
theorem prover to check for consistency between the axioms and candidate logical
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forms for sentences. However, the theorem prover we had implemented (the Satchmo
system, a simple and e¯ cient Prolog-based system for full ­ rst-order logic, described
in Manthey & Bry (1988)) has a requirement that all the clauses used in it must
be `range restricted’, i.e. any variables occurring in the consequent of an implication
must also appear in the antecedent. The maximally compact set of clauses discovered
by CProgol as the theory of these four prepositions does not have this property: in
the clauses for `from’, for example, the variable B in the head does not appear in the
body.

To circumvent this problem, we take instead the more speci­ c versions of the
o¬ending clauses produced by CProgol during the search. Even though these speci­ c
clauses will cover less data, they are all range restricted, and we can thus use them
directly in the manner originally envisaged:

fare(A) & airline(B) --> on(A,B). flight(A) & day(B) --> on(A,B).
flight(A) & airline(B) --> on(A,B). meal(A) & flight(B) --> on(A,B).
event(A) & flight(B) --> on(A,B).
flight(A) & city(B) --> from(A,B). fare(A) & city(B) --> from(A,B).
flight(A) & city(B) --> to(A,B). fare(A) & city(B) --> to(A,B).
fare(A) & time(B) --> at(A,B). flight(A) & time(B) --> at(A,B).

This is a `positive’ theory: it describes what kind of thing happens in the ATIS
domain: meals are on ®ights; ®ights are on airlines; ®ights are to and from cities; etc.
Notice that we can also try to induce a `negative’ theory: a theory of what is not
possible in the domain. (As before, `not possible’ needs attenuating for the general
case to `not plausible’.) To do this, we abstract out the negative data, reverse its
polarity to make it all positive, and use CProgol in `positive data only’ mode to try
to learn a theory of this data.

It turns out that the maximally compact theory is actually of very little use,
because the negative data is very homogeneous, and these four clauses perfectly
account for it all:

on(A,B). from(A,B). to(A,B). at(A,B).

Among other things, this reminds us of the di¯ culty of learning from positive only
data, as the resulting theory is clearly over general. Moreover, we cannot use these
clauses in our theorem prover, for they are not range restricted. Again, though, if
we take the more speci­ c clauses considered during the search, we have axioms that
are both range restricted and at the right level of generality. Of course, we have to
reintroduce the negation:

event(A) & airline(B) --> not(on(A,B)).
event(A) & city(B) --> not(from(A,B)).
event(A) & city(B) --> not(to(A,B)).
event(A) & time(B) --> not(at(A,B)).

4. Consistency checking for disambiguation

For consistency checking with Satchmo, expressions are represented in implicational
form, with atomic sentences occurring as the consequents of an implication whose
antecedent is `true’. Negatives are represented as implications whose consequent is
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`false’. Proving a theorem consists of adding the negation of it to the axioms and
attempting to build a model of the combined set of clauses, essentially by forward
chaining from atomic sentences. If every attempt to do so ends in `false’, there is no
model and so the clause set is not satis­ able, and, thus, the theorem follows from the
axioms. If a model can be built, then this shows that the negation of the theorem is
consistent with the axioms, and so the theorem does not follow.

In order to disambiguate sentences at run time using a domain theory, there are
several options we might pursue. A possible reading should be consistent with the
positive ATIS theory. However, the positive ATIS theory contains no negations, and
so the QLFs for bad examples, unless they happen to contain a relevant negation,
will also be consistent with this theory. The positive theory says what is possible: it
does not explicitly say what is impossible.

One way to use the positive theory to disambiguate would be to add a QLF to it
and to see to what extent each component contributed to building a model for the
sentence. We would expect that in a good QLF all the components would contribute,
whereas in a bad QLF there would be at least one component that would not be
integrated. Alternatively, we could negate the positive theory by making all the
consequents negative, and then test QLFs for inconsistency. Good QLFs should be
inconsistent, whereas bad QLFs will be consistent (since the quasi-negative theory
only says that the things that really do happen don’t happen, whereas a bad QLF
says that the things that really don’t happen do happen).

However, an alternative that is more faithful to the intended interpretation of
these theories is to use the (real) negative ATIS theory to rule out bad QLFs. The
simplest way to do this is to add a QLF to the axioms and test for satis­ ability. If
the QLF is a good one, the clause set will be satis­ able (since good QLFs are not
inconsistent with axioms that say what doesn’t happen). If the QLF is a bad one,
the clause set will not be satis­ able, because the QLF will be asserting something
that the axioms say does not happen.

To illustrate the disambiguation process, consider the set of axioms that Satchmo
will have if we load in the negative ATIS theory, and the background type informa-
tion. When transformed to the implicational form required by Satchmo, these will
look like:

1 airline(A) & event(B) & on(B,A) ! false
2 city(A) & event(B) & from(B,A) ! false
3 city(A) & event(B) & to(B,A) ! false
4 time(A) & event(B) & at(B,A) ! false
5 true ! city(washington)
6 true ! city(atlanta)

The implicational form of the good QLF for our example sentence `I would like the
cheapest ®ight from Washington to Atlanta’ is

7 true ! cheapest(sk0)
8 true ! ®ight(sk0)
9 true ! from(sk0,washington)
10 true ! to(sk0,atlanta)
11 true ! like(e0,i,sk0)
12 true ! event(e0)
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Table 1.

QLFs satis¯able unsatis¯able

good 12 0

bad 3 16

It will be clear that these clauses can be added to the axioms without allowing `false’
to be derived. However, if we instead try to add the clause set representing the bad
QLF, which will be identical to 7{12 except for

10 true ! to(e0,atlanta)

we will immediately have a contradiction, since clauses 3, 6, 10 and 12, taken jointly,
will allow us to conclude `false’, with A=atlanta, and B=e0.

The e¬ectiveness of the induced theory for disambiguation was tested using the
standard regime of training and then testing on held-out data. There were 79 ambigu-
ous sentences in the original corpus. Seven sentences were held out as test data (every
tenth one, the corpus was in the order derived from ATIS); the positive and negative
theories were derived from the data corresponding to the remaining 72 sentences, and
the held-out subset was then disambiguated against the negative theory in the man-
ner described. The derived theories were those above, i.e. no di¬erent than for the
whole corpus, and the results for disambiguation of the testing set were as in table 1.
The errors are the three bad QLFs incorrectly found to be consistent with the nega-
tive theory. These were due to the sentence `Can I have a steak dinner on that ®ight?’
The bad QLFs have the `steak dinner on ®ight’ interpretation, whereas the correct
one is `On that ®ight, can I have a steak dinner?’ However, the negative theory (unlike
the positive one) does not mention meals at all, and so no contradiction is found.

5. Conclusion

We have argued that successful disambiguation may require reasoning using a `do-
main theory’, reasoning that cannot always be approximated by statistical methods,
successful though these have been. Clearly, the ideal would be to integrate these two
complementary approaches to disambiguation, to achieve a theory with su¯ cient
deductive structure to be able to account for cases perhaps quite distant from any-
thing seen in the training corpus, but with the robustness characteristic of statistical
methods.

It is unlikely that it will prove possible to construct the required domain theories
by hand. But disambiguation decisions contain a lot of implicit information about the
domain theory governing those decisions. In this paper we have outlined a method
by which domain theories might in principle be deduced from such disambiguation
decisions, and shown that at least for small and simple domains it is indeed possible
in practice to automatically induce a logically structured domain theory from a
disambiguated corpus. Furthermore, this automatically learned theory can be used
to successfully disambiguate other sentences from the corpus.

While the work described here is no more than a pilot experiment|the corpus is
small and unrealistically homogeneous, and the theory that is learned has a rather
simple deductive structure|it nevertheless suggests that it is worth trying to scale-
up to more complex domains and wider coverage grammars.
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I am grateful to Stephen Muggleton for introducing me to the ILP paradigm and for advice about
the use of CProgol. James Cussens, Gerald Gazdar, Karen Sp�arck Jones and Yorick Wilks also
gave me very helpful comments on the ¯rst draft of this paper.
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Discussion

Y. A. Wilks (University of She± eld, UK ). It is possible to separate your goal
(learning portions of a domain theory from disambiguated text, so as to assist in
disambiguating ambiguous text) from the tool you have used to achieve it (ILP used
to acquire propositional representations of constraints on prepositional relations).
Might not other tools (e.g. syntactic slot ­ lling tools) allow you to achieve the same
goal?

S. G. Pulman. Yes, indeed. However, I have chosen to pursue ILP because it has
the attractive feature of delivering a domain theory with a clear (examinable, com-
prehensible) deductive structure.

F. Pereira (AT & T Laboratories, Florham Park, NJ, USA). The theory derived
is propositional, not ­ rst order, as it includes only unary predicates applied to con-
stants. Therefore, could you not have used techniques other than ILP to induce a
Bayesian belief network? This would have allowed you to introduce probabilities into
the derived theory, hence permitting a theory at a midway point between purely
logical and purely statistical theories.
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S. G. Pulman. The induced theory does not involve only unary predicates: on,
for example, is a binary predicate, and the number of unary predicates re®ects the
nature of the linguistic analysis rather than anything speci­ c to the technique. I
would like to explore Bayesian networks, because they combine deductive structure
with probabilities nicely. But, as you say, they are essentially propositional, and
eventually I would like to see a quanti­ cational aspect in the induced theory as well.

K. I. B. Sp�arck Jones (University of Cambridge, UK ). You argue that the theories
derived by your technique have the advantage of being transparent and editable.
But in a more complex domain might you not get a non-transparent theory, the
application of which would be much more complex?

S. G. Pulman. If such a theory were derived, it would suggest that the domain does
not have much structure, i.e. that there was not much generality to be discovered in
the domain.

P. Jourlin (University of Cambridge, UK ). When you derive a contradiction in
a candidate hypothesis you reject the hypothesis. But perhaps the contradiction
is because the background knowledge of the domain is out of date. How do you
overcome this problem?

S. G. Pulman. The background model needs to be rederived from up-to-date mate-
rials.

J. Cussens (University of York, UK ). This is really just a comment on the previous
question. Work has been done on belief revision within the ILP framework, though
this is not as well developed as other parts of the framework and is hard. The key
point, however, is that an updated theory can be derived without having to start
from scratch.

M. Sabin (Numerical Geometry Ltd, Cambridge, UK ). Where is the frontier between
a su¯ ciently ­ ne-grained grammar and a domain model?

S. G. Pulman. There probably is no frontier: one simply has to decide where to
draw the line.
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